One-Carbon Homologation of Carboxylic Acids via BtCH₂TMS: A Safe Alternative to the Arndt-Eistert Reaction

Alan R. Katritzky,* Suoming Zhang,[‡] Abdel Haleem Mostafa Hussein, and Yunfeng Fang

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

Peter J. Steel

Department of Chemistry, University of Canterbury, Christchurch, New Zealand

katritzky@chem.ufl.edu

Received December 19, 2000

Carboxylic acids are converted into the corresponding homologated acids or esters, using easily available 1-(trimethylsilylmethyl)benzotriazole (1) as a one-carbon synthon. The effectiveness of the reaction has been investigated on six aryl and seven alkyl carboxylic acids.

Introduction

Homologations of carbonyl compounds by a carboncarbon coupling reaction¹ provide many attractive routes to higher analogue carbonyl compounds with one,² two,³ three,¹ and four^{1,4} additional carbon atoms. These techniques have enormously increased the synthetic utility of the carbonyl-containing compounds and have greatly diversified the nature of the chemical reactions available to a synthetic chemist for the construction of new carbon-carbon bonds. Since the synthetic exploitation of carbonyl-containing and particularly acyl functional groups plays a commanding role in the construction of a molecular backbone, reaction sequences that result in a carbon chain extension at a carbonyl group by one or more carbon atoms producing an aldehyde, ketone, or carboxylic acid are especially significant.

Among these reactions, one-carbon homologation of carbonyl compounds is the most important. Three general methods are available for the direct conversions of an acid

(3) For two-carbon homologation: (a) Barton, D. H. R.; Liu, W. Tetrahedron Lett. 1997, 38, 2431. (b) Cabezas, J. A.; Oehlschlager, A. C. Tetrahedron Lett. 1995, 36, 5127. (c) Bellassoued, M.; Lensen, N.; Bakasse, M.; Mouelhi, S. J. Org. Chem. 1998, 63, 8785.
 (4) Bellassoued, M.; Salemkour, M. Tetrahedron Lett. 1993, 34, 5281.

or an acid derivative into a one-carbon higher homologated analogue: (1) The Arndt-Eistert reaction⁵ (Scheme 1a) is the most important and most commonly used procedure for converting a carboxylic acid into its onecarbon higher homologue acid (or ester or amide derivative) with diazomethane; however, to achieve high overall yields, the intermediate diazo compounds often have to be recrystallized, and freshly prepared silver benzoate is required. The classical procedure also suffers from handling difficulties, hindering the large-scale preparations: for example, α -diazomethyl ketones are hazardous and strong skin irritant intermediates.^{5j} Modified Arndt-Eistert procedures ease these only in part.^{5i,k}

(2) Barton's radical homologation⁶ gives good yields but employs the unstable intermediate O-acyl-N-hydroxy-Ithiopyridone and two-carbon radical trap, phenyl vinyl sulfone, as a one-carbon synthon (Scheme 1b).

(3) Kowalski's ester homologation with CH₂Br₂ synthon⁷ affords good yields using the modified procedure. A limitation is that a strong base is required (Scheme 1c).

In our preliminary communication,⁸ we have reported that 1-(trimethylsilylmethyl)benzotriazole (1) reacts with acyl chlorides to give the corresponding one-carbon homologated acids or esters. In this paper, we describe in detail our study of a convenient, safe alternative for acid homologation with the one-carbon synthon 1-(trimethylsilylmethyl)benzotriazole (1), utilizing the anionstabilizing and leaving-group properties of benzotriazole.9

Results and Discussion

Preparation of 1-(Trimethylsilylmethyl)benzotriazole (1) and *N*-Acylmethylbenzotriazoles 3a-m. 1-(Trimethylsilylmethyl)benzotriazole (1) and N-acylm-

[‡] Current address: Neurogen Corp., 35 Northeast Industrial Rd., Branford, CT 06405.

⁽¹⁾ For reviews: (a) Martin, S. F. Synthesis **1979**, 633. (b) Stowell, J. C. Chem. Rev. **1984**, 84, 409.

⁽²⁾ For one-carbon homologation: (a) Satoh, T.; Kubota, K. Tetrahedron Lett. 2000, 41, 2121. (b) Werner, R. M.; Shokek, O.; Davis, J. T. J. Org. Chem. 1997, 62, 8243. (c) Maruoka, K.; Concepcion, A. B.;
 Yamamoto, H. J. Org. Chem. 1994, 59, 4725. (d) Satoh, T.; Mizu, Y.; Hayashi, Y.; Yamakawa, K. Tetrahedron Lett. 1994, 35, 133. (e) Schummer, D.; Hofle, G. Tetrahedron 1995, 51, 11219. (f) Trost, B. M.; Mikhail, G. K. J. Am. Chem. Soc. 1987, 109, 4124.

^{(5) (}a) Mulzer, J. In *Comprehensive Organic Functional Group Transformations*; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon Press: Oxford, 1995; Vol. 5, pp 146 and 276. (b) Skeean, R. W.; Goel, O. P. Synthesis **1990**, 628. (c) Ancliff, R. A.; Russell, A. T.; Sanderson, A. J. Tetrahedron: Asymmetry **1997**, *8*, 3379. (d) Podlech, J.; Seebach, D. Liebigs Ann. **1995**, 1217. (e) Podlech, J.; Seebach, D. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 471. (f) Marti, R. E.; Bleicher, K. H.; Bair, K. W. Tetrahedron Lett. **1997**, *38*, 6145. (g) Limal, D.; Quesnel, A.; Briand, J.-P. Tetrahedron Lett. **1998**, *39*, 4239. (h) Guichard, G.; Abele, S.; Seebach, D. Helv. Chim. Acta **1998**, *81*, 187. (i) Winum, J.-Y.; Kamal, M.; Leydet, A.; Roque, J.-P.; Montero, J.-L. *Tetrahedron Lett.* **1996**, *37*, 1781. (j) Lee, V.; Newman, M. S. Org. Synth. **1988**, 613. (k) Aller, E.; Molina, P.; Lorenzo, A. Synlett **2000**, 4. 526.

^{(6) (}a) Barton, D. H. R.; Chern, C.-Y.; Jaszberenyi, J. S. *Tetrahedron Lett.* **1992**, *33*, 5013. (b) Barton, D. H. R.; Chern, C.-Y.; Jaszberenyi, J. S. *Tetrahedron Lett.* **1991**, *32*, 3309.

^{(7) (}a) Reddy, R. E.; Kowalski, C. J. Org. Synth. **1992**, 146. (b) Kowalski, C. J.; Haque, M. S.; Fields, K. W. J. Am. Chem. Soc. **1985**, 107, 1429.

⁽⁸⁾ Katritzky, A. R.; Zhang, S.; Fang, Y. *Org. Lett.* **2000**, *2*, 3789. (9) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. *Chem. Rev.* 1998, *98*, 409.

Scheme 1

a. The Arndt-Eistert reaction

b. Barton radical homologation

c. Kowalski's ester homologation

 Table 1. One-Carbon Homologation of Carboxylic Acid

 Chlorides 2 to Derivatives 7

		i	isolated yields (%)			
2	R	3	4	5	7 ^a	
а	C ₆ H ₅	85	95	98	89 ^b	
b	p-ClC ₆ H ₄	90	95	97	98 ^c	
с	$p-CH_3OC_6H_4$	90	93	92	93 ^c	
d	$p-CH_3C_6H_4$	91	90	95	90 ^c	
е	$m-CH_3C_6H_4$	87	83	91	92 ^c	
f	o-CH ₃ C ₆ H ₄	90	87	92	92 ^c	
g	$C_6H_5CH_2CH_2$	94	96	94	24^d	
ň	CH ₃	83	88	90	68^d	
i	(CH ₃) ₃ CCH ₂	95	95	98	62^d	
i	(CH ₃) ₃ CCH ₂ CH(CH ₃)CH ₂	90	98	96	48^d	
Ĭ.	$CH_3(CH_2)_4$	97	94	92	59^d	
1	$n-CH_3(CH_2)_6$	95	90	92	49^d	
m	p-ClC ₆ H ₄ CH ₂	86	82			

 a Isolated yield. b Methyl ester from 4 (Method A). c Ethyl ester from 4 in one-pot reaction (method A). d Acid from 8.

ethylbenzotriazoles 3a-m (Table 1) were prepared according to the literature procedures in good yields (83–97%).¹⁰

Preparation of Enol Triflates 4a–m. *Z*-Enol triflates **4a–m** can be easily obtained stereoselectively from *N*-acylmethylbenzotriazoles **3a–m** (Scheme 2): treatment of **3a–m** with triflic anhydride (Tf₂O) in the presence of 2,6-lutidine at 0–20 °C for 2–12 h affords the corresponding enol triflates **4** in excellent isolated yields (82–98%) (see Table 1 and Scheme 2); no stereoisomers were isolated. The *Z*-configuration of the enol triflate **4j** was assigned on the basis of NOE experiments. On irradiation of the vinylic proton in **4j** at 7.42 ppm, NOE between the methylene group and this proton was

^{*a*} Reagents and conditions: (i) THF, reflux; (ii) Tf₂O, 2,6-lutidine, CH₂Cl₂, 0-20 °C; (iii) (a) NaOCH₃, acetonitrile, 65 °C, 2 h, (b) concentrated HCl in an alcohol, reflux.

Figure 1. Perspective view of the X-ray crystal structure of **4a**.

observed, indicating that the alkyl and Bt groups in 4j are mutually trans. For aromatic compounds 4a-f, no obvious NOE were observed resulting from the rotation of the aryl group, which may be perpendicular to the olefin.

To clarify the stereochemistry of these compounds, an X-ray crystal structure determination was carried out on **4a**. Figure 1 shows a perspective view of the structure, which confirms unambiguously the *Z*-stereochemistry of the enol triflate. In the solid state, the planes of the phenyl and benzotriazole ring systems are inclined to the plane of the double bond at angles of 25.3(3) and 36.4- $(3)^{\circ}$, respectively.

Conversion of Aromatic Enol Triflates 4a-f into the Corresponding Esters. Treatment of aromatic enol triflates **4a-f** with 2.2 equiv of NaOCH₃ in acetonitrile at 65 °C for 2 h followed by hydrolysis with concentrated HCl in methanol or ethanol afforded the methyl or ethyl ester **7a-f** in good to excellent yield depending on the alcohol used (Table 1).

We postulate the reaction sequence outlined in Scheme 3. Enol triflate **4a** was treated with 2 N NaOH in THF at 20 °C for 30 min to afford 1-(2-phenylethynyl)-1*H*-1,2,3-benzotriazole (**5a**) (previously prepared in 56% yield using phenylethynyl phenyliodonium tosylate¹¹) in quantitative yield. The effects of the base and solvent are small, using 2 N NaOH/THF or NaOCH₃/CH₃CN gave similar results. Aromatic alkynylbenzotriazoles **5b**-**d**,¹¹ **e**, and **f** were obtained using the same procedure in excellent yields (Table 1).

Refluxing a reaction mixture of **5a** and NaOCH₃ in acetonitrile at 65 °C for 2 h afforded 1-[(E)-1-methoxy-

^{(11) (}a) Kitamura, T.; Tashi, N.; Tsuda, K.; Fujiwara, Y. *Tetrahedron Lett.* **1998**, *39*, 3787. (b) Kitamura, T.; Tashi, N.; Tsuda, K.; Chen, H.; Fujiwara, Y. *Heterocycles* **2000**, *52*, 303.

^{*a*} Reagents and conditions: (i) (a) NaOCH₃ in CH₃CN, 65 °C, (b) concentrated HCl in an alcohol, 70 °C; (ii) NaOCH₃ in CH₃CN or NaOH in THF, 20 °C; (iii) NaOCH₃, acetonitrile, 65 °C, 2 h; (iv) concentrated HCl in an alcohol, 70 °C.

2-phenylethenyl]-1*H*-1,2,3-benzotriazole $(E-6a)^{12}$ as the major product together with 1-[(Z)-1-methoxy-2-phenylethenyl]-1*H*-1,2,3-benzotriazole (**Z**-6a)^{12} as the minor product. No regioisomers were isolated. NOE experiments with *E*-6a displayed the interaction between OCH₃ group and the vinylic proton when the vinylic proton at 6.11 ppm was irradiated. The ratio of E/Z-6a is about 80:20 on the basis of ¹H NMR spectra of the crude product. Analogous intermediate *E*-6d can be isolated in 85% yield. The mixture of *E*-6a and *Z*-6a was hydrolyzed with concentrated HCl in methanol under reflux yielding the homologated methyl 2-phenylacetate 7a in 96% yield.

Ethyl 2-(4-chlorophenyl)acetate **7b** was similarly obtained by treatment of **5b** with 1.0 equiv of NaOCH₃ in CH₃CN under reflux followed by hydrolysis with concentrated HCl in ethanol in 98% overall yield. Analogous two-step reactions from **4** gave **7c**-**f** in excellent yields (Table 1).

Conversion of Aliphatic Enol Triflates 4g–l into the Corresponding Acids. Applied to the aliphatic series, the above procedure gives different results. Allene compound **9i** (34%) and compound **10i** (27%) with the triple bond shifted were obtained when **4i** or **5i** was treated with NaOCH₃ in CH₃CN at 65 °C using the discussed procedure above (Scheme 4). No desired adducts were formed. Similar treatment of **4j** gave only triple bond shifted compound **10j** in 42% yield.

However, when aliphatic enol triflates 4g-m were treated with 2.2 equiv of NaOCH₃/CH₃CN or 2 N NaOH/ THF at room temperature for 1 h, aliphatic alkynylbenzotriazoles 5g-l were obtained in good yields after workup (Table 1). Significantly, the only other known attempt to prepare similar compounds, using direct alkynylation of benzotriazole with alkynyliodonium salts, failed.¹¹ However, for **4m**, only allene compound **9m** was isolated in 75% yield even at 20 °C, which is not surprising because of the high acidity of benzylic and allylic protons compared to a sp² vinylic proton (Scheme 4).

Treatment of **5g**-**l** with *p*-toluenesulfonic acid monohydrate in acetonitrile at 65 °C for 2–12 h generated enol toluenesulfonates **8g**-**l** in good yields with a small amount of the regioisomers (about 10%) and small amount of hydrolyzed product **7g**-**l** (5%). For compound **5g**, the yield of **8g** is poor because cyclization product **11g** was isolated in 30% yield. The generation of **7g**-**l** was best carried out by the treatment of 8g-1 with 1 equiv of TBAF in THF at 70 °C. Direct treatment of 51 with *p*-toluenesulfonic acid followed by the hydrolysis with TBAF in THF without the isolation of intermediate 81 also generated 71 in 49% GC yield (21% isolated yield). This one-pot procedure, though more convenient, affords a lower yield of the product. As shown in Table 2, various conditions for the hydrolysis of 81 were investigated. The reaction conditions gave only moderate GC yield (10–34%).

Conclusion

In summary, a concise and practical procedure for the transformation of both aromatic and aliphatic carboxylic acids into one-carbon homologated acid derivatives in good to excellent yields has been developed using readily available, versatile, and high-yielding reagent 1-(trimethylsilylmethyl)benzotriazole (1) as a one-carbon synthon. The mildness of the reaction conditions, good yields, and the simple workup procedure show the usefulness of this novel approach. 1-Alkynylbenzotriazole chemistry.

Experimental Section

General Methods. Melting points were determined on a MEL-TEMP capillary melting point apparatus equipped with a Fluke 51 digital thermometer. NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H (300 MHz) and ¹³C (75 MHz). THF was distilled from sodium/benzophenone under nitrogen immediately prior to use. All reactions with air-sensitive compounds were carried out under argon atmosphere. Column chromatography was conducted with silica gel (230–400 mesh).

Typical Procedure for the Preparation of 4. To a cooled (0 °C) solution of **3a**-**m** (10 mmol) and 2,6-lutidine (3.47 mL, 20 mmol) in 20 mL of dry CH_2Cl_2 was added dropwise Tf_2O (3.36 mL, 14 mmol). After the mixture was stirred for 10 min, the ice bath was removed, and the reaction mixture was allowed to warm to 25 °C and stirred overnight. Hexane (20 mL) was added to the reaction mixture. The pyridinium salt was filtered off, and the precipitate was washed with ethyl acetate. The filtrate was washed with saturated NH_4Cl , brine, and H_2O , dried over MgSO₄, and concentrated in vacuo to dryness. The residue was recrystallized from hexanes-ethyl acetate to afford white crystals of **4a**-**m** in yields of 82–98%.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-phenylethenyl trifluoromethanesulfonate (4a): white needles; mp 98–99 °C (95%, hexane–ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (1H, dd, J = 8.3, 0.7 Hz, Bt), 7.70–7.75 (2H, m), 7.62–7.63 (2H, m), 7.60 (1H, s, CH=), 7.45–7.55 (4H, m); ¹³C NMR (75 MHz, CDCl₃) δ 145.3 (s), 142.3 (s), 132.4 (s), 131.0 (d), 129.6 (s), 129.2 (d, 2 × CH), 128.8 (d), 126.2 (d, 2 × CH), 124.9 (d), 120.5 (d), 118.2 (q, J = 319.0 Hz, CF₃), 113.8 (d), 109.9 (d). Anal. Calcd for C₁₅H₁₀F₃N₃O₃S: C, 48.78; H, 2.73; N, 11.38. Found: C, 48.89; H, 2.55; N, 11.33.

Crystal data for 4a: C₁₅H₁₀F₃N₃O₃S, MW 369.32, triclinic, space group *P*-1, *a* = 6.258(3) Å, *b* = 10.756(5) Å, *c* = 12.458-(6) Å, *α* = 104.722(5)°, *β* = 93.709(6)°, *γ* = 96.542(6)°, *V* = 801.9(6) Å³, *F*(000) = 376, *Z* = 2, *T* = -100 °C, μ (Mo Kα) = 0.255 mm⁻¹, *D*_{calcd} = 1.530 g·cm⁻³, $2\theta_{max}$ 50° (CCD area detector, Mo Kα radiation), GOF = 1.095, wR(*F*²) = 0.1330 (all 2618 data), *R* = 0.0514 (2145 data with *I* > 2σ*I*).

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-(4-chlorophenyl)ethenyl trifluoromethanesulfonate (4b): white needles; mp 156–157 °C (95%, hexane–ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (1H, d, J = 8.3 Hz, Bt), 7.64–7.67 (5H, m), 7.51– 7.17 (3H, m); ¹³C NMR (75 MHz, CDCl₃) δ 145.3 (s), 140.9 (s), 137.2 (s), 132.4 (s), 129.6 (s), 129.5 (d), 128.8 (d), 127.4 (d), 125.0 (d), 120.5 (d), 118.0 (q, J = 319.0 Hz, CF₃), 114 (d), 109.7

⁽¹²⁾ Katritzky, A. R.; Zhao, X.; Shcherbakova, I. V. J. Chem. Soc., Perkin Trans. 1 1991, 3295.

Scheme 4^a

^a Reagents and conditions: (i) NaOCH₃ in CH₃CN or NaOH in THF, 20 °C; (ii) *p*-TSA in CH₃CN, 65 °C, 2–12 h; (iii) TBAF in THF, 65 °C, 3–7 h; (iv) (a) *p*-TSA in CH₃CN, reflux, (b) 2 N NaOH in acetone or TBAF in THF, reflux; (v) NaOCH₃ in CH₃CN, 65 °C.

Table 2.	Hydrolysis of 8l to 7l under Different
	Conditions

entry	reagent	solvent	time (h)	<i>T</i> (°C)	yield ^a (%)
1	concd HCl	EtOH	24	70	25
2	2 N NaOH	DMSO	4	20	34
3	2 N NaOH	acetone	2	20	28
4	2 N NaOH	EtOH		75	10

^{*a*} GC results of crude product.

(d). Anal. Calcd for $C_{15}H_9ClF_3N_3O_3S$: C, 44.62; H, 2.25; N, 10.14. Found: C, 44.49; H, 2.19; N, 10.22.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-(4-methoxyphenyl)ethenyl trifluoromethanesulfonate (4c): white needles; mp 113–114 °C (93%, hexane–ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (1H, d, J = 8.4 Hz), 7.66 (2H, d, J = 8.9 Hz), 7.59–7.61 (2H, d, J = 4.5 Hz), 7.49 (1H, s), 7.46 (1H, t, J =4.6 Hz), 7.03 (2H, d, J = 8.9 Hz), 3.38 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 161.8 (s), 145.2 (s), 143.0 (s), 132.5 (s), 128.6 (d), 127.9 (d, 2 × CH), 124.8 (d), 123.0 (s), 120.4 (d), 118.0 (q, J = 319.0 Hz, CF₃), 114.6 (d, 2 × CH), 112.2 (d), 109.9 (d), 55.5 (q). Anal. Calcd for C₁₆H₁₂F₃N₃O₄S: C, 48.12; H, 3.03; N, 10.52. Found: C, 48.12; H, 3.02; N, 10.38.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-(4-methylphenyl)ethenyl trifluoromethanesulfonate (4d): white needles; mp 147–148 °C (90%, hexane–ethyl acetate); ¹H NMR δ 8.10 (1H, dd, J = 8.3, 1.0 Hz, Bt), 7.59–7.62 (4H, m, Bt and aromatic proton), 7.56 (1H, s, CH =), 7.42–7.48 (1H, m, Bt), 7.31 (2H, d, J = 8.1 Hz), 2.42 (3H, s, CH₃); ¹³C NMR δ 145.2 (s), 142.8 (s), 141.5 (s), 132.5 (s), 129.9 (d, 2 × CH), 128.7 (d), 128.0 (s), 126.1 (d, 2 × CH), 124.8 (d), 120.3 (d), 118.0 (q, J = 319.6 Hz, CF₃), 113.0 (d), 109.9 (d), 21.4 (q). Anal. Calcd for C₁₆H₁₂F₃N₃O₃S: C, 50.13; H, 3.16; N, 10.96. Found: C, 50.19; H, 2.97; N, 10.92.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-(3-methylphenyl)ethenyl trifluoromethanesulfonate (4e): white microcrystals; mp 122 °C (83%, hexane–ethyl acetate); ¹H NMR δ 8.14 (1H, d, J = 8.4 Hz), 7.62 (2H, d, J = 3.8 Hz), 7.57 (1H, s), 7.54–7.35 (5H, m), 2.46 (3H, s); ¹³C NMR δ 145.3 (s), 142.8 (s), 139.2 (s), 132.5 (s), 131.9 (d), 131.0 (s), 129.2 (d), 128.7 (d), 126.8 (d), 124.9 (d), 123.5 (d), 120.6 (d), 113.6 (d), 109.9 (d), 21.4 (q), missing CF₃.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-(2-methylphenyl)ethenyl trifluoromethanesulfonate (4f): white needles; mp 102 °C (87%, hexane-ethyl acetate); ¹H NMR δ 8.16 (1H, td, J = 8.2, 0.9 Hz), 7.63–7.57 (3H, m), 7.50–7.42 (2H, m), 7.35– 7.33 (3H, m), 2.58 (3H, s); ¹³C NMR δ 145.2 (s), 141.7 (s), 137.7 (s), 132.3 (s), 131.2 (d), 130.9 (d), 130.4 (d), 130.2 (s), 128.7 (d), 126.3 (d), 124.9 (d), 120.5 (d), 118.0 (q, J = 319 Hz, CF₃), 116.5 (d), 109.7 (d), 19.9 (q). Anal. Calcd for C₁₆H₁₂F₃N₃O₃S: C, 50.13; H, 3.16; N, 10.96. Found: C, 50.14; H, 3.04; N, 10.25. (Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-4-phenyl-1-butenyl trifluoromethanesulfonate (4g): white needles; mp 95–96 °C (87%, hexane–ethyl acetate); ¹H NMR δ 8.09 (1H, d, J = 8.2 Hz), 7.53 (1H, t, J = 7.7 Hz), 7.42 (1H, t, J = 7.8 Hz), 7.35 (1H, d, J = 7.1 Hz), 7.24–7.30 (4H, m), 6.98 (1H, s), 3.10 (2H, t, J = 7.0 Hz); 3.00 (2H, t, J = 7.0 Hz); ¹³C NMR δ 145.2 (s), 144.7 (s), 138.6 (s), 132.3 (s), 128.9 (d, 2 × CH), 128.5 (d, 3 × CH), 127.0 (d), 124.6 (d), 120.3 (d), 114.8 (d), 109.8 (d), missing CF₃, 34.5 (t), 32.5 (t). Anal. Calcd for C₁₇H₁₄F₃N₃O₃S: C, 51.38; H, 3.55; N, 10.57. Found: C, 51.50; H, 3.57; N, 10.87.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-propenyl trifluoromethanesulfonate (4h): white microcrystals; mp 115–116 °C (88%, hexane–ethyl acetate); ¹H NMR δ 8.11 (1H, dd, J= 8.21, 0.9 Hz, Bt), 7.49–7.62 (2H, m), 7.41–7.47 (1H, m), 7.13 (1H, q, J= 1.2 Hz, CH =), 2.43 (3H, d, J= 1.2 Hz, CH₃); ¹³C NMR δ 145.2 (s), 142.4 (s), 132.3 (s), 128.6 (d), 124.7 (d), 120.3 (d), 118.5 (q, J= 319 Hz, CF₃), 114.1 (d), 109.8 (d), 18.8 (q). Anal. Calcd for C₁₀H₈F₃N₃O₃S: C, 39.09; H, 2.62; N, 13.68. Found: C, 39.49; H, 2.45; N, 13.59.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-4,4-dimethyl-1-pentenyl trifluoromethanesulfonate (4i): white needles; mp 97–99 °C (95%, hexanes-ethyl acetate); ¹H NMR δ 8.10 (1H, d, J = 8.3 Hz, Bt), 7.58 (1H, t, J = 8.3 Hz, Bt), 7.51 (1H, d, J = 8.2 Hz, Bt), 7.43 (1H, t, J = 8.2 Hz, Bt), 7.20 (1H, s, CH=), 2.55 (2H, s), 1.15 (9H, s); ¹³C NMR δ 145.1 (s), 144.3 (s), 132.2 (s), 128.6 (d), 124.6 (d), 120.1 (d), 118.0 (q, J = 319 Hz, CF3), 116.0 (d), 109.9 (d), 46.2 (t), 31.7 (s), 29.3 (q, 3 × CH₃). Anal. Calcd for C₁₄H₁₆F₃N₃O₃S: C, 46.28; H, 4.44; N, 11.56. Found: C, 46.29; H, 4.14; N, 11.43.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-4,6,6-trimethyl-1-heptentyl trifluoromethanesulfonate (4j): white needles; mp 62–63 °C (94%, hexanes–ethyl acetate); ¹H NMR δ 8.27 (1H, d, J = 8.4 Hz), 7.75 (1H, t, J = 7.6 Hz), 7.64 (1H, d, J = 8.2 Hz), 7.60 (1H, t, J = 7.5 Hz), 7.42 (1H, s), 2.84 (1H, dd, J = 15.1, 6.1 Hz), 2.58 (1H, dd, J = 15.1, 8.6 Hz), 2.20–2.26 (1H, m), 1.55 (1H, dd, J = 14.0, 3.2 Hz), 1.42 (1H, dd, J = 14.0, 6.8 Hz), 1.32 (3H, d, J = 6.7 Hz), 1.14 (9H, s, 3 × CH₃); ¹³C NMR δ 145.3 (s), 145.1 (s), 132.4 (s), 128.6 (d), 124.6 (d), 120.4 (d), 114.9 (d), 109.9 (d), 50.4 (t), 42.3 (d), 31.0 (s), 29.9 (q, 3 × CH₃), 27.0 (t), 22.0 (q). Anal. Calcd for C₁₇H₂₂F₃N₃O₃S: C, 50.36; H, 5.47; N, 10.36. Found: C, 50.25; H, 5.56; N, 9.70.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-heptenyl trifluoromethanesulfonate (4k): white needles; mp 84 °C (95%, hexane–ethyl acetate); ¹H NMR δ 8.10 (1H, d, J = 8.2 Hz), 7.57 (1H, t, J = 7.6 Hz), 7.50–7.40 (2H, m), 7.14 (1H, s), 2.67 (2H, t, J = 7.4 Hz), 1.74–1.82 (2H, m), 1.49–1.38 (4H, m), 0.96 (3H, t, J = 6.8 Hz); ¹³C NMR δ 146.4 (s), 145.3 (s), 132.4 (s), 128.5 (d), 124.6 (d), 120.3 (d), 117.9 (q, J = 313.9 Hz, CF₃), 113.8 (d), 109.9 (d), 32.7 (t), 30.8 (t), 26.0 (t), 22.2 (t), 13.8 (q). Anal. Calcd for $C_{14}H_{16}F_3N_3O_3S$: C, 46.28; H, 4.44; N, 11.56. Found: C, 46.44; H, 4.42; N, 11.51.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-1-nonenyl trifluoromethanesulfonate (4): white needles; mp 77–78 °C (90%, hexanes-ethyl acetate); ¹H NMR δ 8.11 (1H, d, J = 8.3 Hz, Bt), 7.57 (1H, d, J = 8.3 Hz, Bt), 7.50 (1H, t, J = 8.3 Hz, Bt), 7.43 (1H, t, J = 8.2 Hz, Bt), 7.14 (1H, s, CH=), 2.67 (2H, t, J= 7.1 Hz), 1.78 (2H, m, CH₂), 1.33–1.48 (8H, m, 4 × CH₂), 0.91 (3H, t, J = 6.6 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 146.6 (s), 145.5 (s), 132.6 (s), 128.8 (d), 124.9 (d), 120.6 (d), 118.0 (q, J = 319 Hz, CF₃), 114.1 (d), 110.2 (d), 32.9 (t), 31.8 (t), 29.0 (t), 28.9 (t), 26.6 (t), 22.8 (t), 14.3 (q). Anal. Calcd for C₁₅H₁₀F₃N₃O₃S: C, 49.10; H, 5.15; N, 10.74. Found: C, 48.98; H, 5.17; N, 10.17.

(Z)-2-(1*H*-1,2,3-Benzotriazol-1-yl)-3-(4-chlorophenyl)-1propenyl trifluoromethanesulfonate (4m): white needles, mp 115–116 °C (82%, hexanes–ethyl acetate); ¹H NMR δ 8.07 (1H, dd, J= 8.3, 1.0 Hz, Bt), 7.52 (1H, t, J= 8.3 Hz, Bt), 7.51 (1H, d, J= 8.3 Hz), 7.43 (1H, t, J= 8.3 Hz, Bt), 7.05 (1H, s, CH=), 3.93 (3H, s); ¹³C NMR δ 145.2 (s), 144.2 (s), 134.0 (s), 132.2 (s), 131.9 (s), 130.5 (d), 129.4 (d), 128.7 (d), 124.8 (d), 120.3 (d), 118.1 (q, CF₃), 115.6 (d), 109.8 (d), 38.3 (t). Anal. Calcd for C₁₆H₁₁ClF₃N₃O₃S: C, 46.00; H, 2.65; N, 10.06. Found: C, 46.14; H, 2.47; N, 10.00.

Typical Procedure for the Preparation of 5a–l. To a solution of 4a-l (5 mmol) in 10 mL of THF was added 5 mL of 10% NaOH at room temperature. After being stirred for 30 min, the reaction mixture was diluted with Et₂O (60 mL), washed with brine and H₂O, dried over MgSO₄, and concentrated in vacuo to dryness. The residue was purified by column chromatography on silica gel using hexanes–ethyl acetate (10: 1) to afford 5a-l in the yields of 90–98%.

1-[2-(3-Methylphenyl)ethynyl]-1*H***-1,2,3-benzotriazole (5e):** white microcrystals; mp 80–81 °C (91%, hexane– ethyl acetate); ¹H NMR δ 8.13 (1H, d, J = 8.2 Hz), 7.77 (1H, d, J = 8.2 Hz), 7.64 (1H, t, J = 7.1 Hz), 7.50–7.43 (3H, m), 7.31 (1H, t, J = 8.0 Hz), 7.26 (1H, d, J = 7.0 Hz), 2.40 (3H, s); ¹³C NMR δ 143.9 (s), 138.4 (s), 134.3 (s), 132.4 (d), 130.4 (d), 129.3 (d), 128.9 (d), 128.5 (d), 125.2 (d), 120.6 (d), 120.0 (s), 110.2 (d), 80.0 (s), 75.5 (s), 21.2 (q). Anal. Calcd for C₁₅H₁₁N₃: C, 77.23; H, 4.75; N, 18.01. Found: C, 76.94; H, 4.71; N, 17.88.

1-[2-(2-Methylphenyl)ethynyl]-1*H***-1,2,3-benzotriazole (5f):** white microcrystals; mp 79 °C (92%, hexane–ethyl acetate); ¹H NMR δ 8.14 (1H, dd, J = 8.4, 0.9 Hz), 7.74 (1H, dd, J = 8.2, 0.9 Hz), 7.65 (1H, t, J = 7.0 Hz), 7.62 (1H, d, J =8.2 Hz), 7.49 (1H, t, J = 7.0 Hz), 7.36–7.23 (3H, m), 2.60 (3H, s); ¹³C NMR δ 146.8 (s), 144.0 (s), 140.4 (s), 134.3 (s), 132.2 (d), 129.8 (d), 129.5 (d), 129.4 (d), 125.9 (d), 125.3 (d), 120.6 (d); 110.1 (d), 78.7 (s), 74.1 (s), 21.0 (q). Anal. Calcd for $C_{15}H_{11}N_{3}$: C, 77.23; H, 4.75; N, 18.01. Found: C, 77.24; H, 4.76; N, 17.90.

1-(4-Phenyl-1-butynyl)-1*H***-1,2,3-benzotriazole (5g):** white needles; mp 72 °C (94%, hexane–ethyl acetate); ¹H NMR δ 8.08 (1H, d, J = 8.2 Hz), 7.54 (1H, t, J = 7.1 Hz), 7.49–7.34 (2H, m), 7.32–7.25 (5H, m), 3.03 (2H, t, J = 6.8 Hz), 2.91 (2H, t, J = 6.8 Hz); ¹³C NMR δ 143.7 (s), 139.9 (s), 134.4 (s), 129.0 (d), 128.3 (d, 2 × CH), 128.1 (d, 2 × CH), 126.6 (d), 125.0 (d), 120.3 (d), 110.0 (d), 79.6 (s), 68.6 (s), 34.5 (t), 20.8 (t). Anal. Calcd for C₁₆H₁₃N₃: C, 77.71; H, 5.30; N, 16.99. Found: C, 77.57; H, 5.56; N, 16.68.

1-(1-Propynyl)-1*H***-1,2,3-benzotriazole (5h):** solid (90%); ¹H NMR δ 8.08 (1H, d, J = 8.3 Hz, Bt), 7.65 (1H, d, J = 8.3 Hz, Bt), 7.58 (1H, t, J = 8.3 Hz, Bt), 7.42 (1H, t, J = 8.3 Hz, Bt), 2.23 (3H, s); ¹³C NMR δ 143.5 (s), 134.1 (s), 128.9 (d), 124.9 (d), 120.2 (d), 109.9 (d), 76.3 (s), 66.8 (s), 3.5 (q, CH₃). Anal. Calcd for C₉H₇N₃: C, 68.77; H, 4.49. Found: C, 69.10; H, 4.86.

1-(4,4-Dimethyl-1-pentynyl)-1*H***-1,2,3-benzotriazole (5i):** solid (95%); ¹H NMR δ 8.08 (1H, d, J = 8.3 Hz, Bt), 7.62 (1H, d, J = 8.3 Hz, Bt), 7.58 (1H, t, J = 8.3 Hz, Bt), 7.42 (1H, t, J = 8.3 Hz, Bt), 2.48 (2H, s, CH₂), 1.13 (9H, s, $3 \times$ CH₃); ¹³C NMR δ 143.6 (s), 134.3 (s), 128.9 (d), 124.9 (d), 120.2 (d), 109.9 (d), 78.9 (s), 69.2 (s), 33.5 (t), 31.4 (s), 29.0 (q). Anal. Calcd for C₁₃H₁₅N₃: C, 73.21; H, 7.09; N, 19.70. Found: C, 73.09; H, 6.97; N, 20.04.

1-(4,6,6-Trimethyl-1-heptynyl)-1*H***-1,2,3-benzotriazole (5j):** oil (90%); ¹H NMR δ 8.07 (1H, d, J = 8.2 Hz), 7.64 (1H, d, J = 8.2 Hz), 7.58 (1H, td, J = 8.1, 0.6 Hz), 7.41 (1H, td, J = 8.1, 1.2 Hz), 2.57 (1H, dd, J = 16.6, 5.76 Hz), 2.47 (1H, dd, J = 16.6, 6.8 Hz), 1.99–1.89 (1H, m), 1.47 (1H, dd, J = 14.0, 4.2 Hz), 1.22 (1H, dd, J = 14.1, 6.2 Hz), 1.16 (3H, d, J = 6.6 Hz, CH₃), 0.95 (9H, s, $3 \times$ CH₃); ¹³C NMR δ 143.6 (s), 134.2 (s), 128.8 (d), 124.8 (d), 120.1 (d), 109.8 (d), 79.5 (s), 68.4 (s), 49.9 (t), 30.8 (s), 29.7 (q, $3 \times$ CH₃), 28.9 (t), 28.0 (d), 22.0 (q). Anal. Calcd for C₁₆H₂₁N₃: C, 75.26; H, 8.29; N, 16.45. Found: C, 75.25; H, 8.55; N, 16.82.

1-(1-Heptynyl)-1*H***-1,2,3-benzotriazole (5k):** oil (92%); ¹H NMR δ 8.00 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 8.1 Hz), 7.52 (1H, t, J = 6.7 Hz), 7.35 (1H, t, J = 8.0 Hz), 2.53 (2H, t, J = 7.1 Hz), 1.69–1.59 (2H, m), 1.48–1.28 (4H, m), 0.88 (3H, t, J = 7.1 Hz); ¹³C NMR δ 143.4 (s), 134.1 (s), 128.8 (d), 124.7 (d), 120.0 (d), 109.8 (d), 80.3 (s), 67.6 (s), 30.8 (t), 27.8 (t), 21.9 (t), 18.3 (t), 13.7 (q). Anal. Calcd for C₁₃H₁₅N₃: C, 73.21; H, 7.09; N, 19.70. Found: C, 72.82; H, 7.13; N, 19.98.

1-(1-Nonynyl)-1*H***-1,2,3-benzotriazole (51):** oil; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (1H, d, J = 8.3 Hz, Bt), 7.64 (1H, d, J = 8.3 Hz, Bt), 7.58 (1H, t, J = 8.3 Hz, Bt), 7.45 (1H, t, J = 8.3 Hz, Bt), 2.59 (2H, t, J = 7.1 Hz, CH₂), 1.70 (2H, m, CH₂), 1.50 (2H, m, CH₂), 1.13 (6H, m), 0.89 (3H, t, J = 6.6 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 143.6 (s), 134.3 (s), 128.9 (d), 124.9 (d), 120.2 (d), 109.9 (d), 80.5 (s), 67.8 (s), 31.6 (t), 28.8 (t), 28.7 (t), 28.2 (t), 22.5 (t), 18.5 (t), 14.0 (q). Anal. Calcd for C₁₅H₁₉N₃: C, 74.65; H, 7.94; N, 17.41. Found: C, 74.42; H, 8.19; N, 17.66.

Typical Procedure for the Preparation of 6a,¹² **6d. Method A.** To a solution of **4a** or **4d** (1 mmol) in acetonitrile was added solid NaOCH₃ (2 mmol) at room temperature. The reaction mixture was heated under reflux for 2 h and then cooled to room temperature. The reaction mixture was diluted with Et₂O, washed with brine and H₂O, dried over MgSO₄, and evaporated in vacuo to dryness. Purification by flash column chromatography on silica gel using hexane–ethyl acetate (10:1) gave *Z*-**6a** and *E*-**6a** (or **6d**) as a colorless oil in good yields (>80%).

Method B. To a solution of **5a** (219 mg, 1 mmol) in acetonitrile was added solid NaOCH₃ (1.1 mmol, 59.4 mg) at room temperature. The reaction mixture was heated under reflux for 2 h and then cooled to room temperature. The reaction mixture was diluted with Et₂O, washed with brine and H₂O, dried over MgSO₄, and evaporated in vacuo to dryness. The residue was purified by column chromatography on silica gel using hexane–ethyl acetate (10:1) to give *Z*-**6a** and *E*-**6a** as a colorless oil (total yield 98%).

1-[(Z)-1-Methoxy-2-phenylethenyl]-1*H***-1,2,3-benzotriazole (Z-6a):**¹² colorless oil (18%); ¹H NMR δ 8.14 (1H, dd, J = 1.0, 7.6 Hz), 7.78 (1H, dd, J = 1.0, 7.6 Hz), 7.72 (2H, d, J = 7.3 Hz), 7.58 (1H, ddd, J = 1.0, 7.6, 7.6 Hz), 7.39–7.47 (3H, m), 7.30 (1H, ddd, J = 1.0, 7.6, 7.6 Hz), 6.29 (1H, s), 3.65 (3H, s). ¹³C NMR (75 MHz, CDCl₃): δ 146.0 (s), 144.7 (s), 133.5 (s), 132.6 (s), 129.0 (d, 3 × CH), 128.9 (d, 2 × CH), 128.0 (d), 124.9 (d), 120.5 (d), 111.4 (d), 108.3 (d), 58.2 (q).

1-[(*E***)-1-Methoxy-2-phenylethenyl]-1***H***+1,2,3-benzotriazole (***E***-6a).¹² colorless oil (78%); ¹H NMR \delta 8.07 (1H, dd, J = 1.6, 8.6 Hz), 7.33-7.38 (2H, m), 7.20-7.26 (1H, m), 6.99-7.03 (3H, m), 6.62-6.68 (2H, m), 6.11 (1H, s), 3.98 (3H, s). ¹³C NMR (75 MHz, CDCl₃): \delta 145.4 (s), 145.1 (s), 132.7 (s), 132.2 (s), 128.4 (d, 2 × CH), 128.3 (d), 127.5 (d, 2 × CH), 126.8 (d), 124.3 (d), 120.0 (d), 110.4 (d), 101.1 (d), 56.9 (q).**

1-[(*E***)-1-Methoxy-2-(4-methylphenyl)ethenyl]-1***H***-1,2,3benzotriazole (***E***-6d): colorless oil (85%); ¹H NMR \delta 8.12 (1H, dd, J = 0.9, 8.3 Hz), 7.78 (1H, dd, J = 1.0, 7.6 Hz), 7.62 (2H, d, J = 8.1 Hz), 7.57 (1H, ddd, J = 0.9, 7.6, 7.8 Hz), 7.44 (1H, ddd, J = 0.9, 7.6, 8.4 Hz), 7.22 (2H, d, J = 8.1 Hz), 6.27 (1H, s), 3.64 (3H, s), 2.39 (3H, s). ¹³C NMR (75 MHz, CDCl₃): \delta 145.7 (s), 143.9 (s), 137.3 (s), 132.3 (s), 130.3 (s), 129.3 (d, 3 × CH), 128.6 (d, 3 × CH), 124.6 (d), 120.2 (d), 111.1 (d), 108.1 (d), 57.8 (q), 21.3 (q); HRMS(EI) [M + H]⁺ calcd for C₁₆H₁₅N₃O 266.1293, found 266.1293.**

Typical Procedure for the Preparation of 7a–f. Method A from 4a–f. To a cooled (0 °C) solution of enol triflates **4a–f** (7 mmol) in CH₃CN (100 mL) was added NaOCH₃ (15 mmol). The reaction mixture was stirred for 2 h and then heated under reflux for additional 2 h. After the solvent was removed in vacuo, 50 mL of methanol or ethanol and 1 mL of concentrated HCl was added, and the reaction mixture was heated under reflux for 1-2 h. Methanol or ethanol was removed, and the crude product was dissolved in diethyl ether , washed with saturated Na₂CO₃ and H₂O, and dried over MgSO₄. The crude ester was purified by column chromatograph with hexane/ethyl acetate mixture (20:1) to provide the corresponding esters in good yields.

Method B from 5a–f. Alkynylbenzotriazoles **5a–f** were treated with 1.0 equiv of NaOCH₃ in CH₃CN under reflux for 1-2 h followed by hydrolysis with concentrated HCl. The reaction mixture was worked up as in method A, affording desired esters in excellent yields.

Ethyl 2-(4-methoxyphenyl)acetate (7c):¹³ oil (93%); ¹H NMR δ 7.19 (2H, d, J = 8.4 Hz), 6.84 (2H, d, J = 8.4 Hz), 4.12 (2H, q, J = 7.1 Hz, CH₂), 3.77 (3H, s, OCH₃), 3.54 (2H, s, CH₂), 1.48 (3H, t, J = 7.1 Hz, CH₃); ¹³C NMR δ 171.8 (s, CO₂), 158.5 (s), 130.1(d, 2 × CH), 126.1 (s), 113.8 (d, 2 × CH), 60.6 (t), 55.1 (q), 40.3 (t), 14.0 (q).

Typical Procedure for the Preparation of 7g–l. Enol tosylates **8g–l** (1 mmol) were treated with 1.0 equiv of TBAF in THF (10 mL) under reflux for 3-48 h. The reaction mixtures were diluted and washed with 1 N HCl, saturated NaCl, and H₂O. The organic layers were dried over MgSO₄, and the solvent was evaporated in vacuo. Crude products were purified by flash chromatography to provide the desired acids in good yields.

4,4.6-Trimethylheptanoic acid (7j):¹⁴ oil (62%); ¹H NMR δ 2.38–2.32 (2H, m), 1.69–1.61 (1H, m), 1.59–1.43 (2H, m), 1.25–1.18 (1H, dd, J = 3.3, 14.0 Hz), 1.15–1.10 (1H, dd, J = 5.8, 14.0 Hz), 0.93 (3H, d, J = 6.4 Hz), 0.89 (9H, s, 3 × CH₃), missing CO₂H; ¹³C NMR δ 180.5 (s), 50.8 (t), 33.9 (t), 32.0 (t), 31.0 (s), 29.9 (q), 28.8 (d), 22.2 (q).

Typical Procedure for the Preparation of 8g–l. To a solution of 5g-l (1 mmol) in acetonitrile 10 (mL) was added *p*-toluenesulfonic acid monohydrate (190 mg, 1 mmol) at room temperature. The reaction mixture was stirred under reflux for 4 h until TLC showed no presence of the starting material. The resulting mixture was concentrated in vacuo to dryness, and the residue was purified by column chromatography on silica gel using hexanes–EtOAc (10:1) as an eluent to afford **8g–l** (yields of 65–85% except for 24% of **8g**).

1-(1H-1,2,3-Benzotriazol-1-yl)-4-phenyl-1-butenyl 4-methylbenzenesulfonate (8g): oil (24%); ¹H NMR δ 7.91 (1H, d, J = 8.8 Hz), 7.43–7.41 (3H, m), 7.34–7.29 (2H, m), 7.20– 7.12 (3H, m), 7.02 (2H, d, J = 6.8 Hz), 5.96 (2H, d, J = 8.3Hz), 5.93 (1H, t, J = 7.6 Hz), 2.73 (2H, t, J = 7.5 Hz), 2.34 (2H, dt, J = 7.5, 7.6 Hz), 2.25 (3H, s); ¹³C NMR δ 145.5, 144.8, 139.9, 135.1, 132.0, 131.3, 129.2 (2 × CH), 128.5, 128.3 (2 × CH), 128.2 (2 × CH), 127.7 (2 × CH), 126.1, 124.4, 121.7, 119.6, 110.6, 34.8, 28.0, 21.4; HRMS (EI) [M + H]⁺ calcd for C₂₃H₂₁N₃O₃S + 20.1382, found 420.1382. Anal. Calcd for C₂₃H₂₁N₃O₃S; C, 65.85; H, 5.05; N, 10.02. Found: C, 64.87; H, 4.87; N, 10.19.

1-(1*H***-1,2,3-Benzotriazol-1-yl)-1-propenyl 4-methylbenzenesulfonate (8h):** white needles; mp 78–80 °C (62%, hexanes-ethyl acetate); ¹H NMR δ 7.94 (1H, d, J = 8.2 Hz), 7.50–7.44 (2H, m), 7.43 (2H, d, J = 8.2 Hz), 7.33–7.39 (1H, m), 6.98 (2H, d, J = 8.2 Hz), 6.03 (1H, q, J = 7.3 Hz), 2.27 (3H, s), 1.69 (3H, d, J = 7.3 Hz); ¹³C NMR δ 145.5 (s), 144.9 (s), 135.3 (s), 132.3 (s), 131.6 (s), 129.3 (d, $2 \times$ CH), 128.6 (d), 127.8 (d, $2 \times$ CH), 124.4 (d), 119.8 (d), 117.9 (d), 110.6 (d), 21.5 (q), 11.9 (q). Anal. Calcd for C₁₆H₁₅N₃O₃S: C, 58.34; H, 4.59; N, 12.76. Found: C, 58.44; H, 4.72; N, 12.68.

1-(1*H***-1,2,3-Benzotriazol-1-yl)-4,4-dimethyl-1-pentenyl 4-methylbenzenesulfonate (8i):** microcrystals; mp 56– 59 °C (67%, hexanes-ethyl acetate); ¹H NMR ð 7.94 (1H, d, *J* = 8.3 Hz), 7.51–7.45 (4H, m), 7.38–7.33 (1H, m), 7.00 (2H, d, $J = 7.8 \text{ Hz}, 6.03 (1H, t, J = 7.4 \text{ Hz}), 2.27 (3H, s), 1.91 (2H, d, J = 7.4 \text{ Hz}), 0.84 (9H, s); {}^{13}\text{C} \text{ NMR} \delta 145.4 (s), 144.7 (s), 135.1 (s), 132.2 (s), 131.5 (s), 129.2 (d, 2 × CH), 128.5 (d), 127.7 (d, 2 × CH), 124.3 (d), 120.9 (d), 119.6 (d), 110.4 (d), 39.8, 31.0, 28.9 (q, 3 × CH_3), 21.3 (q). Anal. Calcd for <math>C_{20}H_{23}N_3O_3S$: C, 62.32; H, 6.01; N, 10.90. Found: C, 62.68; H, 6.28; N, 11.05.

1-(1*H***-1,2,3-Benzotriazol-1-yl)-4,6,6-trimethyl-1-heptenyl 4-methylbenzenesulfonate (8j):** oil (77%); ¹H NMR δ 7.93 (1H, d, J = 7.4 Hz), 7.43–7.52 (4H, m), 7.32–7.38 (1H, m), 6.98 (2H, d, J = 8.1 Hz), 5.97 (1H, t, J = 7.9 Hz), 2.27 (3H, s), 1.95–2.00 (1H, m), 1.79–1.90 (1H, m), 1.58–1.68 (1H, m), 0.92–1.12 (2H, m), 0.86 (3H, d, J = 6.6 Hz), 0.79 (9H, s); ¹³C NMR δ 145.5, 144.9, 135.1, 132.3, 131.6, 129.3, (2CH), 128.6, 127.8 (2CH), 124.34, 122.4, 119.8, 110.6, 50.2, 35.4, 30.9, 29.8 (3 × CH₃), 29.3, 22.4, 21.5; HRMS(EI) [M + H]⁺ calcd for C₂₃H₂₉N₃O₃S 428.2008, found 428.2008.

1-(1*H***-1,2,3-Benzotriazol-1-yl)-1-heptenyl 4-methylbenzenesulfonate (8k):** oil (82%); ¹H NMR δ 7.94 (1H, d, J = 7.4 Hz), 7.46–7.51 (4H, m), 7.33–7.38 (1H, m), 7.01 (2H, d, J = 8.1 Hz), 5.94 (1H, t, J = 7.9 Hz), 2.28 (3H, s), 1.99 (2H, dt, J = 7.5, 7.6 Hz), 1.38–1.43 (2H, m), 1.17–1.20 (4H, m), 0.82 (3H, t, J = 6.5 Hz); ¹³C NMR δ 145.4, 144.7, 134.4, 132.2, 131.3, 129.2, (2CH), 128.4, 127.7 (2CH), 124.3, 123.1, 119.6, 110.4, 30.8, 28.4, 26.0, 22.0, 21.3, 13.6; HRMS(EI) [M + H]⁺ calcd for C₂₀H₂₃N₃O₃S 386.1538, found 386.1538.

1-(1*H***-1,2,3-Benzotriazol-1-yl)-1-nonenyl 4-methylbenzenesulfonate (8):** pale yellow oil (75%); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (1H, d, J = 8.2 Hz), 7.4–7.53 (4H, m), 7.38 (1H, m), 7.00 (2H, d, J = 8.2 Hz), 5.94 (1H, t, J = 8.0 Hz), 2.28 (3H, s), 1.99 (2H, dt, J = 8.0, 7.7 Hz), 1.40 (2H, m), 1.16–1.22 (8H, m), 0.82 (3H, t, J = 7.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 145.5 (s), 144.7 (s), 134.5 (s), 132.2 (s), 131.4 (s), 129.2 (d), 129.2 (d), 128.5 (d), 127.7 (d), 127.7 (d), 124.3 (d), 123.1 (d), 119.6 (d), 110.4 (d), 31.4 (t), 28.6 (t), 28.6 (t), 28.5 (t), 26.1 (t), 22.3 (t), 21.3 (q), 13.8 (q).

Typical Procedure for the Preparation of 9i,m and 10i,j. Compounds **5i,j**, or **4i,j,m** (1 mmol) were treated with 2.0 equiv of NaOCH₃ in CH₃CN (10 mL) under reflux for 2 h. The solvent was removed in vacuo. The residue was dissolved in ethyl acetate and washed with brine and H₂O. The organic layer was dried over MgSO₄. Concentration in vacuo and purification by flash chromatography afforded **9i,j,m** and **10i,j**, respectively, in good yields.

1-(4,4-Dimethyl-1,2-pentadienyl)-1*H***-1,2,3-benzotriazole (9i):** oil (94%); ¹H NMR δ 8.07 (1H, d, J = 8.2 Hz), 7.87 (1H, d, J = 6.2 Hz), 7.80 (1H, d, J = 8.3 Hz), 7.48 (1H, dt, J = 1.0, 8.1 Hz), 7.42 (1H, dt, J = 1.0, 8.1 Hz), 6.16 (1H, d, J = 6.2 Hz), 1.20 (9H, s); ¹³C NMR δ 192.7 9s), 146.5 (s), 131.3 (s), 127.6 (d), 124.3 (d), 120.0 (d), 116.1 (d), 111.1 (d), 99.1 (d), 33.5 (s), 29.3 (q). Anal. Calcd for C₁₃H₁₅N₃: C, 73.21; H, 7.09; N, 19.70. Found: C, 72.82; H, 7.14; N, 19.98.

1-[3-(4-Chlorophenyl)-1,2-propadienyl]-1*H***1,2,3-benzo-triazole (9m):** oil (75%); ¹H NMR δ 8.23 (1H, d, J = 6.3 Hz), 8.10 (1H, d, J = 8.3 Hz), 7.68 (1H, d, J = 8.2 Hz), 7.44–7.35 (6H, m), 7.10 (1H, d, J = 6.3 Hz); ¹³C NMR δ 197.3 (s), 146.6 (s), 134.9 (s), 131.4 (s), 130.8 (s), 129.3 (d, 2CH), 129.1 (d, 2CH), 128.3 (d), 124.7 (d), 120.3 (d), 110.9 (d), 106.0 (d), 101.1 (d); HRMS(EI) [M + H]⁺ calcd for C₁₅H₁₀ClN₃ 268.0642, found 268.0642.

1-(4,4-Dimethyl-2-pentynyl)-1*H***-1,2,3-benzotriazole (10i):** oil (94%); ¹H NMR δ 8.05 (1H, d, J = 8.3 Hz), 7.75 (1H, d, J = 8.3 Hz), 7.53 (1H, dt, J = 0.9, 8.3 Hz), 7.51 (1H, dt, J = 0.9, 8.3 Hz), 5.42 (2H, s), 1.20 (9H, s); ¹³C NMR δ 146.29s), 132.4 (s), 127.2 (d), 123.9 (d), 119.9 (d), 110.1 (d), 95.3 (s), 70.1 (s), 38.7 (t), 32.3 (s), 30.5 (q). Anal. Calcd for C₁₃H₁₅N₃: C, 73.21; H, 7.09; N, 19.70. Found: C, 72.82; H, 7.14; N, 19.98.

1-(4,6,6-Trimethyl-2-heptynyl)-1*H***-1,2,3-benzotriazole (10j):** white microcrystals; mp 75 °C (94%, hexane); ¹H NMR δ 8.04 (1H, d, J = 8.4 Hz); 7.71 (1H, d, J = 8.4 Hz), 7.49 (1H, t, J = 7.3 Hz), 7.73 (1H, t, J = 7.3 Hz), 5.50 (2H, s), 2.44– 2.50 (1H, m), 1.47 (1H, dd, J = 9.7, 13.5 Hz), 1.19 (1H, dd, J= 3.3, 13.3 Hz), 1.14 (3H, d, J = 7.0 Hz), 0.86 (9H, s); ¹³C NMR δ 146.1 (s), 132.4 (s), 127.1 (d), 123.8 (d), 119.8 (d), 110.0 (d), 93.2 (s), 71.7 (s), 50.4 (t), 38.6 (q), 30.7 (s), 29.5 (q), 23.2 (t),

 ⁽¹³⁾ Lu, X.; Silverman, R. B. J. Am. Chem. Soc. 1998, 120, 10583.
 (14) Holmquist, H. E.; Carnahan, J. E. J. Org. Chem. 1960, 25, 2240.

21.9 (d). Anal. Calcd for $C_{16}H_{21}N_3:\,$ C, 75.25; H, 8.29; N, 16.45. Found: C, 75.21; H, 8.55; N, 16.83.

1-(3,4-Dihydro-1-naphthalenyl)-1*H***-1,2,3-benzotriazole (11g):** solid (30%); ¹H NMR δ 8.14 (1H, d, J = 7.5 Hz), 7.45–7.35 (3H, m), 7.28?7.21 (2H, m), 7.07 (1H, dd, J = 7.0, 7.8 Hz), 6.51 (1H, d, J = 7.8 Hz), 6.44 (1H, t, J = 4.8 Hz), 3.04 (2H, t, J = 8.0 Hz), 2.67 (2H, m); ¹³C NMR δ 145.7 (s), 136.0 (s), 134.3 (s), 133.5 (s), 130.3 (s), 128.7 (d), 128.0 (d), 127.7 (d), 127.4 (d), 126.8 (d), 124.1 (d), 122.8 (d), 120.0 (d), 110.7 (d), 27.2 (t), 22.8 (t). Anal. Calcd for $C_{16}H_{13}N_3;\,\,C,\,77.71;\,H,\,5.30;\,N,\,16.99.$ Found: C, 77.90; H, 5.63; N, 17.16.

Supporting Information Available: Experimental procedures and characterization for compounds **3a**–**1** and **5a**–**d**, **7b**,**d**–**f**,**i**; NMR spectra data for **4c**,**e**–**g**,**i**–**k**,**m**, **5e**–**k**, **6c**, **8g**–**j**, **9i**,**m**, **10i**,**j**, and **11g**; and details of the X-ray crystal structure of **4a**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0017640